low pressure tanks built to API Standard 620 must be in accordance with Section 7 of API Standard 620 and its references to the normal and emergency venting requirements in API Standard 2000.

(4) Pressure and vacuum-relieving devices installed on high pressure tanks built to API Standard 2510 must be in accordance with Sections 5 or 9 of API Standard 2510.

[Amdt. 195-66, 64 FR 15935, Apr. 2, 1999]

§ 195.266 Construction records.

- A complete record that shows the following must be maintained by the operator involved for the life of each pipeline facility:
- (a) The total number of girth welds and the number nondestructively tested, including the number rejected and the disposition of each rejected weld.
- (b) The amount, location; and cover of each size of pipe installed.
- (c) The location of each crossing of another pipeline.
- (d) The location of each buried utility crossing.
- (e) The location of each overhead crossing.
- (f) The location of each valve and corrosion test station.

[Amdt. 195–22, 46 FR 38360, July 27, 1981, as amended by Amdt. 195–34, 50 FR 34474, Aug. 26, 1985]

Subpart E—Pressure Testing

§195.300 Scope.

This subpart prescribes minimum requirements for the pressure testing of steel pipelines. However, this subpart does not apply to the movement of pipe under § 195.424.

[Amdt. 195-51, 59 FR 29384, June 7, 1994]

§195.302 General requirements.

(a) Except as otherwise provided in this section and in §195.305(b), no operator may operate a pipeline unless it has been pressure tested under this subpart without leakage. In addition, no operator may return to service a segment of pipeline that has been replaced, relocated, or otherwise changed until it has been pressure tested under this subpart without leakage.

- (b) Except for pipelines converted under §195.5, the following pipelines may be operated without pressure testing under this subpart:
- (1) Any hazardous liquid pipeline whose maximum operating pressure is established under §195.406(a)(5) that is—
- (i) An interstate pipeline constructed before January 8, 1971;
- (ii) An interstate offshore gathering line constructed before August 1, 1977;
- (iii) An intrastate pipeline constructed before October 21, 1985; or
- (iv) A low-stress pipeline constructed before August 11, 1994 that transports HVL.
- (2) Any carbon dioxide pipeline constructed before July 12, 1991, that—
- (i) Has its maximum operating pressure established under §195.406(a)(5); or
- (ii) Is located in a rural area as part of a production field distribution system.
- (3) Any low-stress pipeline constructed before August 11, 1994 that does not transport HVL.
- (4) Those portions of older hazardous liquid and carbon dioxide pipelines for which an operator has elected the risk-based alternative under §195.303 and which are not required to be tested based on the risk-based criteria.
- (c) Except for pipelines that transport HVL onshore, low-stress pipelines, and pipelines covered under §195.303, the following compliance deadlines apply to pipelines under paragraphs (b)(1) and (b)(2)(i) of this section that have not been pressure tested under this subpart:
- (1) Before December 7, 1998, for each pipeline each operator shall—
- (i) Plan and schedule testing according to this paragraph; or
- (ii) Establish the pipeline's maximum operating pressure under §195.406(a)(5).
- (2) For pipelines scheduled for testing, each operator shall—
- (i) Before December 7, 2000, pressure test—
- (A) Each pipeline identified by name, symbol, or otherwise that existing records show contains more than 50 percent by mileage (length) of electric resistance welded pipe manufactured before 1970; and
- (B) At least 50 percent of the mileage (length) of all other pipelines; and

§ 195.303

(ii) Before December 7, 2003, pressure test the remainder of the pipeline mileage (length).

[Amdt. 195–51, 59 FR 29384, June 7, 1994, as amended by Amdt. 195–53, 59 FR 35471, July 12, 1994; Amdt. 195–51B, 61 FR 43027, Aug. 20, 1996; Amdt. 195–58, 62 FR 54592, Oct. 21, 1997; Amdt. 195–63, 63 FR 37506, July 13, 1998; Amdt. 195–65, 63 FR 59479, Nov. 4, 1998]

§ 195.303 Risk-based alternative to pressure testing older hazardous liquid and carbon dioxide pipelines.

- (a) An operator may elect to follow a program for testing a pipeline on risk-based criteria as an alternative to the pressure testing in §195.302(b)(1)(i)-(iii) and §195.302(b)(2)(i) of this subpart. Appendix B provides guidance on how this program will work. An operator electing such a program shall assign a risk classification to each pipeline segment according to the indicators described in paragraph (b) of this section as follows:
- (1) Risk Classification A if the location indicator is ranked as low or medium risk, the product and volume indicators are ranked as low risk, and the probability of failure indicator is ranked as low risk;
- (2) Risk Classification C if the location indicator is ranked as high risk; or
 - (3) Risk Classification B.
- (b) An operator shall evaluate each pipeline segment in the program according to the following indicators of risk:
 - (1) The location indicator is—
- (i) High risk if an area is non-rural or environmentally sensitive 1; or
 - (ii) Medium risk; or
- (iii) Low risk if an area is not high or medium risk.
 - (2) The product indicator is ¹
- (i) High risk if the product transported is highly toxic or is both highly volatile and flammable;
- (ii) Medium risk if the product transported is flammable with a flashpoint of less than 100° F, but not highly volatile: or
- (iii) Low risk if the product transported is not high or medium risk.
- (3) The volume indicator is—
- (i) High risk if the line is at least 18 inches in nominal diameter;

- (ii) Medium risk if the line is at least 10 inches, but less than 18 inches, in nominal diameter; or
- (iii) Low risk if the line is not high or medium risk.
- (4) The probability of failure indicator is—
- (i) High risk if the segment has experienced more than three failures in the last 10 years due to time-dependent defects (e.g., corrosion, gouges, or problems developed during manufacture, construction or operation, etc.); or
- (ii) Low risk if the segment has experienced three failures or less in the last 10 years due to time-dependent defects.
- (c) The program under paragraph (a) of this section shall provide for pressure testing for a segment constructed of electric resistance-welded (ERW) pipe and lapwelded pipe manufactured prior to 1970 susceptible to longitudinal seam failures as determined through paragraph (d) of this section. The timing of such pressure test may be determined based on risk classifications discussed under paragraph (b) of this section. For other segments, the program may provide for use of a magnetic flux leakage or ultrasonic internal inspection survey as an alternative to pressure testing and, in the case of such segments in Risk Classification A. may provide for no additional measures under this subpart.
- (d) All pre-1970 ERW pipe and lapwelded pipe is deemed susceptible to longitudinal seam failures unless an engineering analysis shows otherwise. In conducting an engineering analysis an operator must consider the seam-related leak history of the pipe and pipe manufacturing information as available, which may include the pipe steel's mechanical properties, including fracture toughness; the manufacturing process and controls related to seam properties, including whether the ERW process was high-frequency or low-frequency, whether the weld seam was heat treated, whether the seam was inspected, the test pressure and duration during mill hydrotest; the quality control of the steel-making process; and other factors pertinent to seam properties and quality.

¹ (See Appendix B, Table C).